Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 999
Filtrar
1.
Sci Rep ; 14(1): 8716, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622170

RESUMO

Artificial selection has been widely applied to genetically fix rare phenotypic features in ornamental domesticated animals. For many of these animals, the mutated loci and alleles underlying rare phenotypes are known. However, few studies have explored whether these rare genetic mutations might have been fixed due to competition among related mutated alleles or if the fixation occurred due to contingent stochastic events. Here, we performed genetic crossing with twin-tail ornamental goldfish and CRISPR/Cas9-mutated goldfish to investigate why only a single mutated allele-chdS with a E127X stop codon (also called chdAE127X)-gives rise to the twin-tail phenotype in the modern domesticated goldfish population. Two closely related chdS mutants were generated with CRISPR/Cas9 and compared with the E127X allele in F2 and F3 generations. Both of the CRISPR/Cas9-generated alleles were equivalent to the E127X allele in terms of penetrance/expressivity of the twin-tail phenotype and viability of carriers. These findings indicate that multiple truncating mutations could have produced viable twin-tail goldfish. Therefore, the absence of polymorphic alleles for the twin-tail phenotype in modern goldfish likely stems from stochastic elimination or a lack of competing alleles in the common ancestor. Our study is the first experimental comparison of a singular domestication-derived allele with CRISPR/Cas9-generated alleles to understand how genetic fixation of a unique genotype and phenotype may have occurred. Thus, our work may provide a conceptual framework for future investigations of rare evolutionary events in domesticated animals.


Assuntos
Sistemas CRISPR-Cas , Carpa Dourada , Animais , Carpa Dourada/genética , Alelos , Evolução Biológica , Mutação , Fenótipo , Animais Domésticos/genética
2.
Mol Biol Evol ; 41(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38507661

RESUMO

Recent studies have suggested that dogs were domesticated during the Last Glacial Maximum (LGM) in Siberia, which contrasts with previous proposed domestication centers (e.g. Europe, the Middle East, and East Asia). Ancient DNA provides a powerful resource for the study of mammalian evolution and has been widely used to understand the genetic history of domestic animals. To understand the maternal genetic history of East Asian dogs, we have made a complete mitogenome dataset of 120 East Asian canids from 38 archaeological sites, including 102 newly sequenced from 12.9 to 1 ka BP (1,000 years before present). The majority (112/119, 94.12%) belonged to haplogroup A, and half of these (55/112, 49.11%) belonged to sub-haplogroup A1b. Most existing mitochondrial haplogroups were present in ancient East Asian dogs. However, mitochondrial lineages in ancient northern dogs (northeastern Eurasia and northern East Asia) were deeper and older than those in southern East Asian dogs. Results suggests that East Asian dogs originated from northeastern Eurasian populations after the LGM, dispersing in two possible directions after domestication. Western Eurasian (Europe and the Middle East) dog maternal ancestries genetically influenced East Asian dogs from approximately 4 ka BP, dramatically increasing after 3 ka BP, and afterwards largely replaced most primary maternal lineages in northern East Asia. Additionally, at least three major mitogenome sub-haplogroups of haplogroup A (A1a, A1b, and A3) reveal at least two major dispersal waves onto the Qinghai-Tibet Plateau in ancient times, indicating eastern (A1b and A3) and western (A1a) Eurasian origins.


Assuntos
População do Leste Asiático , Genoma Mitocondrial , Humanos , Animais , Cães , DNA Mitocondrial/genética , Ásia Oriental , Animais Domésticos/genética , Haplótipos , Variação Genética , Filogenia , Mamíferos/genética
3.
Genes Brain Behav ; 23(1): e12887, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38373143

RESUMO

Domesticated animals have been developed by selecting desirable traits following the initial unconscious selection stage, and now exhibit phenotypes desired by humans. Tameness is a common behavioural trait found in all domesticated animals. At the same time, these domesticated animals exhibit a variety of morphological, behavioural, and physiological traits that differ from their wild counterparts of their ancestral species. These traits are collectively referred to as domestication syndrome. However, whether this phenomenon exists is debatable. Previously, selective breeding has been used to enhance active tameness, a motivation to interact with humans, in wild heterogeneous stock mice derived from eight wild inbred strains. In the current study, we used tame mice to study how selective breeding for active tameness affects behavioural and morphological traits. A series of behavioural and morphological analyses on mice showed an increased preference for social stimuli and a longer duration of engagement in non-aggressive behaviour. However, no differences were observed in exploratory or anxiety-related behaviours. Similarly, selection for tameness did not affect ultrasonic vocalisations in mice, and no changes were observed in known morphological traits associated with domestication syndrome. These results suggest that there may be a link between active tameness and sociability and provide insights into the relationship between tameness and other behaviours in the context of domestication.


Assuntos
Comportamento Animal , Domesticação , Humanos , Animais , Camundongos , Comportamento Animal/fisiologia , Animais Domésticos/genética , Seleção Artificial , Agressão/fisiologia
4.
J Genet ; 1032024.
Artigo em Inglês | MEDLINE | ID: mdl-38258301

RESUMO

This article aimed to detect the existence of barley-specific Nikita and Sukkula retrotransposons in domestic geese samples and to evaluate the evolutionary relationships between these and other transposons belonging to the family Anatidae. Inter-retrotransposonamplified polymorphism-polymerase chain reaction (IRAP-PCR) method was performed for these retrotransposons movements in three diverse domestic goose populations (Chinese x Embden crossbred, Turkish White, and Turkish Multicolor). Polymorphism ratios were between 0 and 33% in all samples for Nikita and 0-73% in all samples for Sukkula. In addition, intrapopulation genetic polymorphism rates were also 0-15% in Chinese x Embden crossbred, 0-25% in Turkish White, 0-25% in Turkish Multicolor for Nikita; while 0-27% in Chinese x Embden, and 0-50% in Turkish Multicolor for Sukkula. There was no polymorphism for Sukkula among Turkish White samples. Moreover, the neighbour-joining method was used for phylogenetic tree construction using 38 sequences of different ducks, geese, and swans. In silico analyses supported the transitions of retrotransposons in the family Anatidae. It is concluded that transposon mobility among the phylogenetically distant species may lead to understanding evolutionary relationships. This report is one of the first studies investigating retrotransposon movements in domestic geese, revealing a new perspective on the goose genome regarding mobile genetic elements.


Assuntos
Gansos , Aves Domésticas , Retroelementos , Animais , Animais Domésticos/genética , Evolução Biológica , China , Gansos/genética , Genoma , Filogenia , Aves Domésticas/genética , Retroelementos/genética , Turquia
5.
BMC Biol ; 22(1): 4, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166816

RESUMO

BACKGROUND: The common carp (Cyprinus carpio) might best represent the domesticated allopolyploid animals. Although subgenome divergence which is well-known to be a key to allopolyploid domestication has been comprehensively characterized in common carps, the link between genetic architecture underlying agronomic traits and subgenome divergence is unknown in the selective breeding of common carps globally. RESULTS: We utilized a comprehensive SNP dataset in 13 representative common carp strains worldwide to detect genome-wide genetic variations associated with scale reduction, vibrant skin color, and high growth rate in common carp domestication. We identified numerous novel candidate genes underlie the three agronomically most desirable traits in domesticated common carps, providing potential molecular targets for future genetic improvement in the selective breeding of common carps. We found that independently selective breeding of the same agronomic trait (e.g., fast growing) in common carp domestication could result from completely different genetic variations, indicating the potential advantage of allopolyploid in domestication. We observed that candidate genes associated with scale reduction, vibrant skin color, and/or high growth rate are repeatedly enriched in the immune system, suggesting that domestication of common carps was often accompanied by the disease resistance improvement. CONCLUSIONS: In common carp domestication, asymmetric subgenome selection is prevalent, while parallel subgenome selection occurs in selective breeding of common carps. This observation is not due to asymmetric gene retention/loss between subgenomes but might be better explained by reduced pleiotropy through transposable element-mediated expression divergence between ohnologs. Our results demonstrate that domestication benefits from polyploidy not only in plants but also in animals.


Assuntos
Carpas , Domesticação , Animais , Carpas/genética , Genoma , Animais Domésticos/genética , Fenótipo
6.
Genet Sel Evol ; 56(1): 1, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166592

RESUMO

The domestication of animals started around 12,000 years ago in the Near East region. This "endless process" is characterized by the gradual accumulation of changes that progressively marked the genetic, phenotypic and physiological differences between wild and domesticated species. The main distinctive phenotypic characteristics are not all directly attributable to the human-mediated selection of more productive traits. In the last decades, two main hypotheses have been proposed to clarify the emergence of such a set of phenotypic traits across a variety of domestic species. The first hypothesis relates the phenotype of the domesticated species to an altered thyroid hormone-based signaling, whereas the second one relates it to changes in the neural crest cells induced by selection of animals for tameness. These two hypotheses are not necessarily mutually exclusive since they may have contributed differently to the process over time and space. The adaptation model induced by domestication can be adopted to clarify some aspects (that are still controversial and debated) of the long-term evolutionary process leading from the wild Neolithic mouflon to the current domestic sheep. Indeed, sheep are among the earliest animals to have been domesticated by humans, around 12,000 years ago, and since then, they have represented a crucial resource in human history. The aim of this review is to shed light on the molecular mechanisms and the specific genomic variants that underlie the phenotypic variability between sheep and mouflon. In this regard, we carried out a critical review of the most recent studies on the molecular mechanisms that are most accredited to be responsible for coat color and phenotype, tail size and presence of horns. We also highlight that, in such a complicate context, sheep/mouflon hybrids represent a powerful and innovative model for studying the mechanism by which the phenotypic traits related to the phenotypic responses to domestication are inherited. Knowledge of these mechanisms could have a significant impact on the selection of more productive breeds. In fact, as in a journey back in time of animal domestication, the genetic traits of today's domestic species are being progressively and deliberately shaped according to human needs, in a direction opposite to that followed during domestication.


Assuntos
Evolução Biológica , Carneiro Doméstico , Animais , Ovinos/genética , Humanos , Carneiro Doméstico/genética , Domesticação , Fenótipo , Cruzamento , Animais Domésticos/genética
7.
Anim Genet ; 55(1): 152-157, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37921236

RESUMO

Microcephaly is a rare neurodevelopmental disorder characterized by reduced skull circumference and brain volume that occurs sporadically in farm animals. We investigated an early-onset neurodegenerative disorder observed in seven lambs of purebred Kerry Hill sheep. Clinical signs included inability to stand or severe ataxia, convulsions, and early death. Diagnostic imaging and brain necropsy confirmed microcephaly. The pedigree of the lambs suggested monogenic autosomal recessive inheritance. We sequenced the genome of one affected lamb, and comparison with 115 control genomes revealed a single private protein-changing variant. This frameshift variant, MFSD2A: c.285dupA, p.(Asp96fs*9), represents a 1-bp duplication predicted to truncate 80% of the open reading frame. MFSD2A is a transmembrane protein that is essential for maintaining blood-brain barrier homeostasis and plays a key role in regulating brain lipogenesis. Human MFSD2A pathogenic variants are associated with a neurodevelopmental disorder with progressive microcephaly, spasticity, and brain imaging abnormalities (NEDMISBA, OMIM 616486). Here we present evidence for the occurrence of a recessively inherited form of microcephaly in sheep due to a loss-of-function variant in MFSD2A (OMIA 002371-9940). To the best of our knowledge, this is the first report of a spontaneous MFSD2A variant in domestic animals.


Assuntos
Microcefalia , Doenças dos Ovinos , Simportadores , Humanos , Ovinos/genética , Animais , Microcefalia/genética , Microcefalia/veterinária , Microcefalia/metabolismo , Encéfalo/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Mutação da Fase de Leitura , Carneiro Doméstico/genética , Carneiro Doméstico/metabolismo , Animais Domésticos/genética , Linhagem , Simportadores/genética , Doenças dos Ovinos/genética
8.
Microbiol Spectr ; 12(1): e0250423, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38088550

RESUMO

IMPORTANCE: The horizontal gene transfer events are the major contributors to the current spread of CTX-M-encoding genes, the most common extended-spectrum ß-lactamase (ESBL), and many clinically crucial antimicrobial resistance (AMR) genes. This study presents evidence of the critical role of IS26 transposable element for the mobility of bla CTX-M gene among Escherichia coli isolates from children and domestic animals in the community. We suggest that the nucleotide sequences of IS26-bla CTX-M could be used to study bla CTX-M transmission between humans, domestic animals, and the environment, because understanding of the dissemination patterns of AMR genes is critical to implement effective measures to slow down the dissemination of these clinically important genes.


Assuntos
Anti-Infecciosos , Infecções por Escherichia coli , Animais , Criança , Humanos , Infecções por Escherichia coli/epidemiologia , Plasmídeos/genética , Equador , Escherichia coli/genética , Animais Domésticos/genética , beta-Lactamases/genética , Testes de Sensibilidade Microbiana
9.
Science ; 382(6671): 625-626, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37943918

RESUMO

After millennia of isolation, a few decades of interbreeding have rendered the animal "genomically extinct".


Assuntos
Animais Domésticos , Animais Selvagens , Gatos , Espécies em Perigo de Extinção , Extinção Biológica , Hibridização Genética , Animais , Escócia , Animais Domésticos/genética , Animais Selvagens/genética , Genoma , Marcadores Genéticos , Doenças do Gato/genética
11.
Genes (Basel) ; 14(9)2023 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-37761841

RESUMO

Eurasia is represented by all climatic zones and various environments. A unique breed variety of farm animals has been developed in Russia, whose territory covers a large area of the continent. A total of 69 local breeds and types of dairy, wool, and meat sheep (Ovis aries) are maintained here. However, the genetic diversity and maternal origin of these local breeds have not been comprehensively investigated. In this study, we describe the diversity and phylogeny of Russian sheep breeds inhabiting different geographical regions based on the analysis of complete sequences of mitochondrial genomes (mtDNA). Complete mtDNA sequences of the studied sheep were obtained using next-generation sequencing technology (NGS). All investigated geographical groups of sheep were characterized by high haplotype (Hd = 0.9992) and nucleotide diversity (π = 0.00378). Analysis of the AMOVA results showed that genetic diversity was majorly determined by within-population differences (77.87%). We identified 128 haplotypes in all studied sheep. Haplotypes belonged to the following haplogroups: B (64.8%), A (28.9%), C (5.5%), and D (0.8%). Haplogroup B was predominant in the western part of Russia. A high level of mtDNA polymorphism in the studied groups of local sheep indicates the presence of a significant reserve of unique genotypes in Russia, which is to be explored.


Assuntos
DNA Mitocondrial , Mitocôndrias , Ovinos/genética , Animais , DNA Mitocondrial/genética , Filogenia , Mitocôndrias/genética , Animais Domésticos/genética , Federação Russa
12.
Genomics Proteomics Bioinformatics ; 21(3): 483-500, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37652165

RESUMO

The Chinese crested (CC) duck is a unique indigenous waterfowl breed, which has a crest cushion that affects its survival rate. Therefore, the CC duck is an ideal model to investigate the genetic compensation response to maintain genetic stability. In the present study, we first generated a chromosome-level genome of CC ducks. Comparative genomics revealed that genes related to tissue repair, immune function, and tumors were under strong positive selection, indicating that these adaptive changes might enhance cancer resistance and immune response to maintain the genetic stability of CC ducks. We also assembled a Chinese spot-billed (Csp-b) duck genome, and detected the structural variations (SVs) in the genome assemblies of three ducks (i.e., CC duck, Csp-b duck, and Peking duck). Functional analysis revealed that several SVs were related to the immune system of CC ducks, further strongly suggesting that genetic compensation in the anti-tumor and immune systems supports the survival of CC ducks. Moreover, we confirmed that the CC duck originated from the mallard ducks. Finally, we revealed the physiological and genetic basis of crest traits and identified a causative mutation in TAS2R40 that leads to crest formation. Overall, the findings of this study provide new insights into the role of genetic compensation in adaptive evolution.


Assuntos
Animais Domésticos , Patos , Animais , Cães , Animais Domésticos/genética , Patos/genética , Genoma , Fenótipo , Mutação
13.
Gene ; 886: 147719, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37597708

RESUMO

Due to environmental change and anthropogenic activities, global biodiversity has suffered an unprecedented loss, and the world is now heading toward the sixth mass extinction event. This urges the need to step up our efforts to promote the sustainable use of animal genetic resources and plan effective strategies for their conservation. Although habitat preservation and restoration are the primary means of conserving biodiversity, genomic technologies offer a variety of novel tools for identifying biodiversity hotspots and thus, support conservation efforts. Conservation genomics is a broad area of science that encompasses the application of genomic data from thousands or tens of thousands of genome-wide markers to address important conservation biology concerns. Genomic approaches have revolutionized the way we understand and manage animal populations, providing tools to identify and preserve unique genetic variants and alleles responsible for adaptive genetic variation, reducing the deleterious consequences of inbreeding, and increasing the adaptive potential of threatened species. The advancement of genomic technologies, particularly comparative genomic approaches, and the increased accessibility of genomic resources in the form of genome-enabled taxa for non-model organisms, provides a distinct advantage in defining conservation units over traditional genetics approaches. The objective of this review is to provide an exhaustive overview of the concept of conservation genomics, discuss the rationale behind the transition from conservation genetics to genomic approaches, and emphasize the potential applications of genomic techniques for conservation purposes. We also highlight interesting case studies in both livestock and wildlife species where genomic techniques have been used to accomplish conservation goals. Finally, we address some challenges and future perspectives in this field.


Assuntos
Animais Domésticos , Genômica , Animais , Animais Domésticos/genética , Gado , Alelos , Animais Selvagens/genética
14.
BMC Bioinformatics ; 24(1): 305, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528412

RESUMO

BACKGROUND: Since the introduction of next-generation sequencing (NGS) techniques, whole-exome sequencing (WES) and whole-genome sequencing (WGS) have not only revolutionized research, but also diagnostics. The gradual switch from single gene testing to WES and WGS required a different set of skills, given the amount and type of data generated, while the demand for standardization remained. However, most of the tools currently available are solely applicable for human analysis because they require access to specific databases and/or simply do not support other species. Additionally, a complicating factor in clinical genetics in animals is that genetic diversity is often dangerously low due to the breeding history. Combined, there is a clear need for an easy-to-use, flexible tool that allows standardized data processing and preferably, monitoring of genetic diversity as well. To fill these gaps, we developed the R-package variantscanR that allows an easy and straightforward identification and prioritization of known phenotype-associated variants identified in dogs and other domestic animals. RESULTS: The R-package variantscanR enables the filtering of variant call format (VCF) files for the presence of known phenotype-associated variants and allows for the estimation of genetic diversity using multi-sample VCF files. Next to this, additional functions are available for the quality control and processing of user-defined input files to make the workflow as easy and straightforward as possible. This user-friendly approach enables the standardisation of complex data analysis in clinical settings. CONCLUSION: We developed an R-package for the identification of known phenotype-associated variants and calculation of genetic diversity.


Assuntos
Animais Domésticos , Software , Humanos , Animais , Cães , Animais Domésticos/genética , Sequenciamento Completo do Genoma/métodos , Fenótipo , Bases de Dados Genéticas , Sequenciamento de Nucleotídeos em Larga Escala
15.
Mamm Genome ; 34(3): 418-436, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37460664

RESUMO

Current genome sequencing technologies have made it possible to generate highly contiguous genome assemblies for non-model animal species. Despite advances in genome assembly methods, there is still room for improvement in the delineation of specific gene features in the genomes. Here we present genome visualization and annotation tools to support seven livestock species (bovine, chicken, goat, horse, pig, sheep, and water buffalo), available in a new resource called AgAnimalGenomes. In addition to supporting the manual refinement of gene models, these browsers provide visualization tracks for hundreds of RNAseq experiments, as well as data generated by the Functional Annotation of Animal Genomes (FAANG) Consortium. For species with predicted gene sets from both Ensembl and RefSeq, the browsers provide special tracks showing the thousands of protein-coding genes that disagree across the two gene sources, serving as a valuable resource to alert researchers to gene model issues that may affect data interpretation. We describe the data and search methods available in the new genome browsers and how to use the provided tools to edit and create new gene models.


Assuntos
Animais Domésticos , Bases de Dados Genéticas , Animais , Bovinos , Suínos , Cavalos/genética , Ovinos/genética , Animais Domésticos/genética , Anotação de Sequência Molecular , Genoma/genética , Mapeamento Cromossômico , Cabras/genética
16.
Genes (Basel) ; 14(7)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37510385

RESUMO

Microsatellites, also known as simple sequence repeats (SSRs), are polymorphic loci that play an important role in genome research, animal breeding, and disease control. Ranch animals are important components of agricultural landscape. The ranch animal SSR database, ranchSATdb, is a web resource which contains 15,520,263 putative SSR markers. This database provides a comprehensive tool for performing end-to-end marker selection, from SSRs prediction to generating marker primers and their cross-species feasibility, visualization of the resulting markers, and finding similarities between the genomic repeat sequences all in one place without the need to switch between other resources. The user-friendly online interface allows users to browse SSRs by genomic coordinates, repeat motif sequence, chromosome, motif type, motif frequency, and functional annotation. Users may enter their preferred flanking area around the repeat to retrieve the nucleotide sequence, they can investigate SSRs present in the genic or the genes between SSRs, they can generate custom primers, and they can also execute in silico validation of primers using electronic PCR. For customized sequences, an SSR prediction pipeline called miSATminer is also built. New species will be added to this website's database on a regular basis throughout time. To improve animal health via genomic selection, we hope that ranchSATdb will be a useful tool for mapping quantitative trait loci (QTLs) and marker-assisted selection. The web-resource is freely accessible at https://bioinfo.usu.edu/ranchSATdb/.


Assuntos
Gado , Polimorfismo Genético , Animais , Mapeamento Cromossômico , Gado/genética , Genoma de Planta , Animais Domésticos/genética , Bases de Dados Genéticas , Repetições de Microssatélites/genética
17.
Sci Adv ; 9(25): eadf4068, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37352351

RESUMO

The increased tameness to reduce avoidance of human in wild animals has been long proposed as the key step of animal domestication. The tameness is a complex behavior trait and largely determined by genetic factors. However, the underlying genetic mutations remain vague and how they influence the animal behaviors is yet to be explored. Behavior tests of a wild-domestic hybrid goat population indicate the locus under strongest artificial selection during domestication may exert a huge effect on the flight distance. Within this locus, only one missense mutation RRM1I241V which was present in the early domestic goat ~6500 years ago. Genome editing of RRM1I241V in mice showed increased tameness and sociability and reduced anxiety. These behavioral changes induced by RRM1I241V were modulated by the alternation of activity of glutamatergic synapse and some other synapse-related pathways. This study established a link between RRM1I241V and tameness, demonstrating that the complex behavioral change can be achieved by mutations under strong selection during animal domestication.


Assuntos
Animais Domésticos , Comportamento Animal , Domesticação , Mutação de Sentido Incorreto , Ribonucleosídeo Difosfato Redutase , Animais , Camundongos , Animais Domésticos/genética , Cabras/genética , Ribonucleosídeo Difosfato Redutase/genética , Seleção Genética
18.
Gene ; 860: 147226, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36736503

RESUMO

Intramuscular fat (IMF) is the main determinant of the economic value of domestic animal meat, and has a vital impact on the sensory quality characteristics, while the content of IMF is mainly determined by the size and number of intramuscular adipocytes. In recent years, due to the development of sequencing technology and omics technology, a large number of non-coding RNAs have been identified in intramuscular adipocytes. Non-coding RNAs are a kind of RNA regulatory factors with biological functions but without translation function, which mainly include microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). These non-coding RNAs regulate the key genes of intramuscular adipocyte growth and development at post-transcriptional level through a variety of regulatory mechanisms, and affect the number and size of intramuscular adipocytes, thus affecting the content of IMF. Here, the review summarizes the candidate non-coding RNAs (miRNAs, lncRNAs, circRNAs) and genes involved in the regulation of intramuscular adipocytes, the related regulation mechanism and signaling pathways, in order to provide reference for further clarifying the molecular regulation mechanism of non-coding RNAs on intramuscular adipocytes in domestic animals.


Assuntos
MicroRNAs , RNA Longo não Codificante , Animais , Animais Domésticos/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Circular/metabolismo , Adipócitos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
19.
Biomolecules ; 13(2)2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36830683

RESUMO

Circular RNAs (circRNAs) are a highly conserved and specifically expressed novel class of covalently closed non-coding RNAs. CircRNAs can function as miRNA sponges, protein scaffolds, and regulatory factors, and play various roles in development and other biological processes in mammals. With the rapid development of high-throughput sequencing technology, thousands of circRNAs have been discovered in farm animals; some reportedly play vital roles in skeletal muscle and adipose development. These are critical factors affecting meat yield and quality. In this review, we have highlighted the recent advances in circRNA-related studies of skeletal muscle and adipose in farm animals. We have also described the biogenesis, properties, and biological functions of circRNAs. Furthermore, we have comprehensively summarized the functions and regulatory mechanisms of circRNAs in skeletal muscle and adipose development in farm animals and their effects on economic traits such as meat yield and quality. Finally, we propose that circRNAs are putative novel targets to improve meat yield and quality traits during animal breeding.


Assuntos
MicroRNAs , RNA Circular , Animais , RNA Circular/genética , Animais Domésticos/genética , Animais Domésticos/metabolismo , MicroRNAs/genética , Músculo Esquelético/metabolismo , Fenótipo , Mamíferos/metabolismo
20.
PLoS One ; 18(2): e0281216, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36827402

RESUMO

BACKGROUND: Cryptosporidium is a ubiquitous enteric protozoan pathogen infecting humans, domestic animals, and wildlife worldwide. It is a waterborne pathogen with recognized zoonotic potential and a definite cause of diarrhea and nutritional disorders in institutional and community settings. One challenge facing the world's supply of clean drinking water is contamination from feces and soil. It has been established that small quantities of oocysts, the infective stage, can cause human disease. Also, their resistance to chlorination and other water treatment procedures has been demonstrated. Kpong, a community in the Lower Manya Krobo Municipality of the Eastern Region of Ghana, is one of the primary sources of water supply to Accra, the capital city of Ghana. Being able to determine the effectiveness of water treatment processes and identifying sources of contamination of this pathogen in our water bodies is thus of public health importance. The study aimed to conduct molecular epidemiology of Cryptosporidium spp. in the Lower Manya Krobo Municipality. METHODOLOGY/PRINCIPAL FINDINGS: A total of 230 samples, 180 fecal samples from cattle and 50 water samples (tap water and well water) were collected from the following communities: Kpong, Akwernor, Ablotsi, Nuaso, and Atua, all in the Lower Manya Krobo Municipality. Samples were screened for Cryptosporidium by microscopy and PCR. The 18S rRNA gene was amplified by nested polymerase chain reaction (PCR), and the final product was sequenced. The prevalence of Cryptosporidium from the fecal samples was estimated as 10% (18/180) by microscopy, while all 50 water samples were negative. However, PCR gave the prevalence of Cryptosporidium as 47.8% (86/180) for fecal samples and 20% (10/50) for water samples. Based on the 18S rRNA gene, three sequenced samples showed high homology to C. parvum species. The phylogenetic analysis confirmed this as these sequences clustered with C. parvum sequences from other countries. CONCLUSION/SIGNIFICANCE: Cryptosporidium parvum was identified as the persistent species in the study communities. This outcome supports the evidence that domesticated animals serve as potential reservoirs of zoonotic transmission of cryptosporidiosis. The persistence of cryptosporidiosis in cattle indicates its presence in the human population. In addition, the presence of Cryptosporidium parvum in the wells makes it alarming and necessary to consider a holistic approach such as One Health Strategies to identify and control cases in humans.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Animais , Humanos , Bovinos , Cryptosporidium/genética , Criptosporidiose/epidemiologia , Filogenia , Gana , Epidemiologia Molecular , Cryptosporidium parvum/genética , RNA Ribossômico 18S/genética , Animais Domésticos/genética , Fezes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...